$\mathrm{Mo}_{2} \mathrm{P}_{4} \mathrm{Si}_{4} \mathrm{O}_{23}$, a Molybdenum (V) Silicophosphate Related to the β-Cristobalite

A. LECLAIRE, M. M. BOREL, A GRANDIN, AND B. RAVEAU
Laboratoire de Cristallographie et Sciences des Matériaux, CRISMAT, ISMRa, Boulevard du Marechal Juin, 14032 Caen Cedex, France

Received December 1, 1988; in revised form February 13, 1989

Abstract

Single crystals of a new molybdenum (V) silicophosphate $\mathrm{Mo}_{2} \mathrm{P}_{4} \mathrm{Si}_{4} \mathrm{O}_{23}$ have been synthesized and studied by X-ray diffraction. This compound crystallizes in the space group $P \overline{1}$ with $a=8.415(2), b=$ $5.215(2), c=11.190(1) \AA, \alpha=77.77(2), \beta=77.77(1), \gamma=73.11(2)^{\circ}$. The structure is formed of cornersharing MoO_{6} octahedra, PO_{4} tetrahedra, and SiO_{4} tetrahedra. It can be described as built up from $\left[\mathrm{P}_{4} \mathrm{Si}_{4} \mathrm{O}_{16}\right]_{\infty} \beta$-cristobalite-type layers parallel to (001) connected through $\left[\mathrm{Mo}_{2} \mathrm{O}_{7}\right]_{x}$. planes of MoO_{6} octahedra. Such a compound suggests the possibility of generating different members, $\left[\mathrm{P}_{4} \mathrm{Si}_{4+m} \mathrm{O}_{16+2 m}\right]\left[\mathrm{MO}_{2} \mathrm{O}_{7}\right]$, differing from each other only by the thickness of the β-cristobalite layer, i.e., by the number of SiO_{4} tetrahedra. © 1989 Academic Press, Inc.

Introduction

The different investigations of oxides involving phosphorus and molybdenum have shown an extraordinarily rich crystal chemistry since about 20 phosphates of molybdenum have been isolated, whose mixed framework is built up of MoO_{6} octahedra and PO_{4} tetrahedra, and characterized by various oxidation states of molybdenum ranging from $\mathrm{Mo}(\mathrm{III})$ to $\mathrm{Mo}(\mathrm{VI})$ (1-2I). Although not too numerous, several silicophosphates of molybdenum have recently been isolated. These latter ox-ides- $A \mathrm{Mo}_{3} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}, A=\mathrm{K}, \mathrm{Rb}, \mathrm{Tl}$, Cs (22-24); $\mathrm{Mo}_{4} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}$ (25); $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$ (26); $\mathrm{Mo}_{3} \mathrm{P}_{5} \mathrm{SiO}_{19}$ (27)-have a common structural feature: their host lattice is characterized by the presence of the same structural unit " $\mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}$ " formed of a disilicate group sharing its corners with six PO_{4} tetrahedra. During the investigation of one of those
system $\mathrm{Ag}-\mathrm{Mo}-\mathrm{P}-\mathrm{Si}-\mathrm{O}$ crystals of a new phase, involving $\mathrm{Mo}(\mathrm{V}), \mathrm{Mo}_{2} \mathrm{P}_{4} \mathrm{Si}_{4} \mathrm{O}_{23}$ were isolated. We report here on the crystal structure of this compound which is closely related to β-cristobalite.

Experimental

A reaction aiming at " $\mathrm{AgMo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$ " was performed in two steps. First an adequate mixture of $\mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{H}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PO}_{4}$, and MoO_{3} was heated to 673 K in order to eliminate $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$, and NH_{3}. In the second step the resulting finely ground product was mixed with an appropriate amount of molybdenum and sealed in an evacuated silica ampoule. This sample was then heated up to 1073 K for 2 days and quenched at room temperature. When the ampoule was opened we obtained a mixture in which some green transparent plate crystals were isolated. The composition deduced from

TABLE I
Summary of Crystal Data, Intensity
Measurements, and Structure Refinement
Parameters for $\mathrm{Mo}_{2} \mathrm{P}_{4} \mathrm{Si}_{4} \mathrm{O}_{23}$

1. Crystal data		
Cell dimensions	$a=8.415(1) \AA$	$\alpha=77.77(2)^{\circ}$
	$b=5.215(2)$	$\beta=77.77(1)$
	$c=11.190(1)$	$\gamma=73.11(2)$
Volume	$V=453.3(2) \AA^{3}$	
Z	1	
2. Intensity measurement		
λ ($\mathrm{MoK} \bar{\alpha}^{\text {人 }}$)	0.71073 A	
Scan mode	$\omega-\frac{2}{8} \theta$	
Scan width (${ }^{\circ}$)	$1.1+0.35 \tan \theta$	
Slit aperture (mm)	1. $+\tan \theta$	
$\operatorname{Max} \theta\left({ }^{\circ}\right)$	45	
Standard reflections	3 measured every 2000 sec (no decay)	
Reflections with $I>3 \sigma$	1263	
3. Structure solution and refinement		
Parameters refined	151	
Agreement factors	$R=0.043, R_{\mathrm{w}}=$	

the structural determination, $\mathrm{Mo}_{2} \mathrm{P}_{4} \mathrm{Si}_{4} \mathrm{O}_{23}$, was confirmed by microprobe analysis. Subsequently a reaction to prepare pure $\mathrm{Mo}_{2} \mathrm{P}_{4} \mathrm{Si}_{4} \mathrm{O}_{23}$ was performed but we could not obtain this phase in this manner.

Structure Determination

A green plate crystal with dimensions $0.216 \times 0.024 \times 0.012 \mathrm{~mm}$ was selected for the structure determination. The cell parameters reported in Table I were determined and refined by diffractometric techniques at 294 K with a least-squares refinement based upon 25 reflections with $18<\theta<22^{\circ}$.

The data were collected on a CAD-4 Enraf-Nonius diffractometer with the data collection parameters reported in Table I. The reflections were corrected for Lorentz and polarization effects; no absorption corrections were performed.

Atomic coordinates of the molybdenum atom were deduced from the Patterson function and the other atoms were located
by subsequent Fourier series. Refinement of the atomic coordinates and their anisotropic thermal parameters led to $R=0.043$, $R_{\mathrm{w}}=0.048$ and to the atomic parameters of Table II.

Description of the Structure and Discussion

The structure of $\mathrm{Mo}_{2} \mathrm{P}_{4} \mathrm{Si}_{4} \mathrm{O}_{23}$ (Fig. 1) is built up from corner-sharing MoO_{6} octahedra and PO_{4} and SiO_{4} tetrahedra.

Each MoO_{6} octahedra shares five corners with a PO_{4} tetrahedron, whereas the sixth corner is free. The " O_{6} " octahedron is almost regular, but Mo is off-centered. It results in four medium Mo-O distances (1.998 to $2.053 \AA$), a longer one ($2.119 \AA$), and a very short one ($1.661 \AA$), as shown in Table III. This geometry and especially the short Mo-O distance corresponding to the free oxygen is characteristic of $\mathrm{Mo}(\mathrm{V})$ and has already been observed in other $\mathrm{Mo}(\mathrm{V})$ phosphates: $\mathrm{K}_{4} \mathrm{Mo}_{8} \mathrm{P}_{12} \mathrm{O}_{52}$ (11), $\mathrm{Cs}_{2} \mathrm{MO}_{4}$

TABLE II
Positional Parameters and Their Estimated Standard Deviations

Atom	x	y	z	$B\left(\AA^{2}\right)$
Mo	$0.2544(1)$	$0.2910(2)$	$0.14829(8)$	$0.69(1)$
$\mathrm{P}(1)$	$0.3147(3)$	$-0.1585(4)$	$-0.0528(2)$	$0.71(4)$
$\mathrm{P}(2)$	$0.1891(3)$	$0.7510(4)$	$0.3317(2)$	$0.67(3)$
$\mathrm{Si}(1)$	$0.3130(3)$	$0.5584(5)$	$0.5722(2)$	$0.71(4)$
$\mathrm{Si}(2)$	$-0.1870(3)$	$-0.0574(5)$	$0.2863(2)$	$0.68(4)$
$\mathrm{O}(1)$	$0.2551(8)$	$-0.001(1)$	$0.3031(6)$	$1.2(1)$
$\mathrm{O}(2)$	$0.3037(9)$	$0.548(1)$	$-0.0059(6)$	$1.3(1)$
$\mathrm{O}(3)$	$0.2627(9)$	$0.002(1)$	$0.0528(6)$	$1.1(1)$
$\mathrm{O}(4)$	$0.2892(8)$	$0.532(1)$	$0.2587(6)$	$1.1(1)$
$\mathrm{O}(5)$	$0.0462(9)$	$0.408(1)$	$0.1699(7)$	$1.6(1)$
$\mathrm{O}(6)$	$0.5194(8)$	$0.143(1)$	$0.1318(6)$	$1.3(1)$
$\mathrm{O}(7)$	$0.1737(8)$	$-0.028(1)$	$-0.1379(6)$	$1.2(1)$
$\mathrm{O}(8)$	$0.1837(8)$	$0.638(1)$	$0.4728(6)$	$1.1(1)$
$\mathrm{O}(9)$	$0.0020(8)$	$-0.174(2)$	$0.3165(7)$	$1.5(1)$
$\mathrm{O}(10)$	$-0.2808(9)$	$-0.294(1)$	$0.3368(6)$	$1.5(1)$
$\mathrm{O}(11)$	$-0.2800(9)$	$0.198(1)$	$0.3539(7)$	$1.7(1)$
$\mathrm{O}(12)$	0.500	0.500	0.500	$1.3(2)$

Fig. 1. Projection of the structure of $\mathrm{Mo}_{2} \mathrm{P}_{4} \mathrm{Si}_{4} \mathrm{O}_{23}$ along \mathbf{b}.
$\mathrm{P}_{6} \mathrm{O}_{26}$ (12), $\gamma-\mathrm{CsMo}_{2} \mathrm{P}_{3} \mathrm{O}_{13}$ (13), and δ $\mathrm{KMo}_{2} \mathrm{P}_{3} \mathrm{O}_{13}$ (14).

Two types of PO_{4} tetrahedra are observed. Each $\mathrm{P}(1)$ tetrahedron shares three corners with three MoO_{6} octahedra and the fourth corner with a SiO_{4} tetrahedron. Each $\mathrm{P}(2)$ tetrahedron is linked to two MoO_{6} octahedra and two SiO_{4} tetrahedra. The $\mathrm{P}-\mathrm{O}$ distances are rather homogeneous, ranging from 1.49 to $1.585 \AA$ (Table IV). However, it must be pointed out that the $\mathrm{P}-\mathrm{O}$ distances involving oxygen atoms common to Mo and P are shorter than those corresponding to the $\mathrm{P}-\mathrm{O}-\mathrm{Si}$ bonds, in agreement with the distances previously observed in the silicophosphates $\mathrm{AMo}_{3} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}$ (22-24), $\mathrm{Mo}_{4} \mathrm{P}_{6} \mathrm{Si}_{2} \mathrm{O}_{25}$ (25), and $\mathrm{MoP}_{3} \mathrm{SiO}_{11}$ (26).

Two types of SiO_{4} tetrahedra are also in-

TABLE III

Mo	O(1)	O(2)	O(3)	O(4)	O(5)	O(6)
O(1)	2.051(8)	4.03(1)	2.79(1)	2.81(1)	2.73(1)	2.78(1)
O(2)	$168.5(3)$	1.998(8)	2.89(1)	2.92(1)	2.76 (1)	$2.78(1)$
$\mathrm{O}(3)$	86.8(3)	$92.6(3)$	2.002(7)	4.03(1)	2.73(1)	2.83(1)
$\mathrm{O}(4)$	86.3(3)	92.3(3)	168.2(3)	2.053(8)	2.74(1)	2.77(1)
$\mathrm{O}(5)$	94.1(4)	97.44)	95.8(4)	94.3(4)	1.661(9)	3.78(1)
O(6)	83.7(3)	84.8(3)	86.6(3)	83.1(3)	176.6(4)	$2.119(8)$

TABLE IV
Distances (\AA) and Angles $\left({ }^{\circ}\right)$ in the PO_{4} Tetrahedra

$\mathrm{P}(1)$	$\mathrm{O}\left(2^{\text {i }}\right.$)	O(3)	$\mathrm{O}\left(6^{\text {ii) }}\right.$	O(7)
$O\left(2^{\text {i }}\right.$)	1.530(8)	2.50(1)	2.52(1)	2.48(1)
O(3)	$110.5(5)$	1.508(8)	2.54(1)	2.46(1)
$\mathrm{O}\left(6^{\text {iii }}\right.$)	112.3(5)	115.2(5)	1.501(8)	2.49(1)
O(7)	105.6(5)	105.0(5)	107.4(4)	1.585(8)
$\mathrm{P}(2)$	$\mathrm{O}\left({ }^{\text {iii) }}\right.$)	$\mathrm{O}(4)$	$\mathrm{O}(8)$	$\mathrm{O}\left(9^{\text {iiii }}\right)$
$\mathrm{O}\left({ }^{\text {iii) }}\right.$)	1.499(8)	2.51(1)	2.48(1)	2.51(1)
$\mathrm{O}(4)$	114.1(5)	1.493(8)	2.49(1)	2.49(1)
O(8)	108.5(4)	109.4(5)	1.559(8)	2.43(1)
$\mathrm{O}\left(9^{\text {iii) }}\right.$)	111.0(5)	$110.3(5)$	102.9(5)	1.545(8)

Note. For symmetry code, see Table 5.
volved in this structure. In the $\operatorname{Si}(1)$ tetrahedron, three corners are shared with Si tetrahedra and one corner with a PO_{4} tetrahedron, whereas in the $\operatorname{Si}(2)$ tetrahedron two corners are shared with $\mathrm{Si}(1)$ tetrahedra and two corners with PO_{4} tetrahedra. In the same way as noticed above for PO_{4} tetrahedra, the $\mathrm{Si}-\mathrm{O}$ distances (Table V) corresponding to the $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ bonds are

TABLE V
Distances (\AA) and Λ ngles $\left({ }^{\circ}\right)$ in the SiO_{4}
Tetrahedra

$\mathrm{Si}(1)$	$O(8)$	$O\left(10^{\mathrm{iv})}\right.$	$\mathrm{O}\left(11^{v}\right)$	$\mathrm{O}(12)$
$\mathrm{O}(8)$	$1.628(9)$	$2.59(1)$	$2.63(1)$	$2.61(1)$
$\mathrm{O}\left(10^{\mathrm{iv}}\right)$	$107.1(4)$	$1.588(9)$	$2.62(1)$	$2.61(1)$
$\mathrm{O}\left(11^{\mathrm{v}}\right)$	$109.9(5)$	$111.0(5)$	$1.588(9)$	$2.59(1)$
$\mathrm{O}(12)$	$108.9(3)$	$110.5(4)$	$109.4(4)$	$1.584(3)$
$\mathrm{Si}(2)$	$\mathrm{O}\left(7^{\mathrm{vi}}\right)$	$\mathrm{O}(9)$	$\mathrm{O}(10)$	$\mathrm{O}(11)$
$\mathrm{O}\left(7^{\mathrm{vi})}\right.$	$1.614(8)$	$2.60(1)$	$2.65(1)$	$2.64(1)$
$\mathrm{O}(9)$	$107.3(4)$	$1.610(8)$	$2.58(1)$	$2.61(1)$
$\mathrm{O}(10)$	$111.4(4)$	$107.5(5)$	$1.593(9)$	$2.61(1)$
$\mathrm{O}(11)$	$110.9(5)$	$109.3(5)$	$110.3(5)$	$1.588(9)$
Note. Symmetry code: i, $x, y-1, z ; \mathrm{ii}, 1-x,-y$				
$-z ; i i i, x, 1+y, z ; \mathrm{iv},-x,-y, 1-z ; \mathrm{v},-x, 1-y$,				
$1-z ; \mathrm{vi},-x,-y,-z$.				

TABLE VI
Refined Displacement Parameter Expressions $\boldsymbol{\beta}$'s

Name	$\beta(1,1)$	$\beta(2,2)$	$\beta(3,3)$	$\beta(1,2)$	$\beta(1,3)$	$\beta(2,3)$
Mo	$0.00294(7)$	$0.0080(2)$	$0.00106(3)$	$-0.0012(2)$	$-0.00018(8)$	$-0.0019(1)$
$\mathrm{P}(1)$	$0.0032(2)$	$0.0075(6)$	$0.0014(1)$	$-0.0025(6)$	$-0.0015(3)$	$-0.0003(5)$
$\mathrm{P}(2)$	$0.0026(2)$	$0.0085(6)$	$0.0010(1)$	$-0.0016(6)$	$-0.0007(3)$	$-0.0005(5)$
$\mathrm{Si}(1)$	$0.0028(3)$	$0.0077(7)$	$0.0013(1)$	$-0.0014(7)$	$0.0004(3)$	$-0.0022(5)$
$\mathrm{Si}(2)$	$0.0025(3)$	$0.0080(7)$	$0.0012(1)$	$0.0004(7)$	$-0.0015(3)$	$-0.008(5)$
$\mathrm{O}(1)$	$0.0069(8)$	$0.011(2)$	$0.0020(4)$	$-0.005(2)$	$-0.003(1)$	$-0.001(1)$
$\mathrm{O}(2)$	$0.0064(9)$	$0.007(2)$	$0.0029(5)$	$-0.002(2)$	$-0.001(1)$	$-0.003(2)$
$\mathrm{O}(3)$	$0.0077(9)$	$0.007(2)$	$0.0024(4)$	$-0.005(2)$	$-0.001(1)$	$-0.006(1)$
$\mathrm{O}(4)$	$0.0047(8)$	$0.008(2)$	$0.0031(4)$	$0.001(2)$	$-0.003(1)$	$-0.004(2)$
$\mathrm{O}(5)$	$0.0054(8)$	$0.018(2)$	$0.0042(5)$	$-0.003(2)$	$-0.004(1)$	$-0.008(2)$
$\mathrm{O}(6)$	$0.0030(8)$	$0.016(2)$	$0.0023(5)$	$0.000(2)$	$-0.001(1)$	$0.002(2)$
$\mathrm{O}(7)$	$0.0023(7)$	$0.020(2)$	$0.0012(4)$	$-0.000(2)$	$-0.0015(9)$	$0.003(2)$
$\mathrm{O}(8)$	$0.0045(8)$	$0.017(2)$	$0.0016(4)$	$-0.012(2)$	$0.0004(9)$	$0.001(2)$
$\mathrm{O}(9)$	$0.0033(7)$	$0.022(3)$	$0.0028(4)$	$0.001(2)$	$-0.0045(9)$	$-0.000(2)$
$\mathrm{O}(10)$	$0.006(1)$	$0.014(2)$	$0.0028(5)$	$-0.001(3)$	$-0.003(1)$	$0.004(2)$
$\mathrm{O}(11)$	$0.006(1)$	$0.017(2)$	$0.0044(5)$	$0.005(3)$	$-0.003(1)$	$-0.014(1)$
$\mathrm{O}(12)$	$0.001(1)$	$0.026(4)$	$0.0014(6)$	$-0.002(3)$	$0.001(1)$	$-0.001(3)$

Note. The form of the anisotropic displacement parameter is: $\exp \left[-\left(\beta(1,1)^{*} h 2+\beta(2,2)^{*} k 2+\right.\right.$ $\beta(3,3)^{*} l 2+\beta(1,2)^{*} h k+\beta(1,3)^{*} h l+\beta(2,3)^{*} k l$.
shorter than those corresponding to the $\mathrm{Si}-$ O-P bonds, as observed for other silicophosphates of molybdenum (22-26). (For the refined displacement parameter expressions of β see Table VI.)

The examination of the structure along the [100] direction (Fig. 2a) shows that it is closely related to that of β-cristobalite (28,
29) (Fig. 2b). It consists indeed of β-cristobalite layers parallel to the (a, c) plane and connected to each other through MoO_{6} octahedra. Such layers are four tetrahedra thick, i.e., formed of strings of four tetrahedra running along c; in these chains, the two SiO_{4} tetrahedra are located inside the layers, whereas the two PO_{4} tetrahedra are

Fig. 2. (a) Partial projection of the structure on (100) showing the β-cristobalite slices. (b) Partial projection of the β-cristobalite along [111].

Fig. 3. The $\left[\mathrm{Si}_{4} \mathrm{O}_{8}\right)_{x}$ ribbon running along b.
located on the side of the layer, i.e. are connected to the MoO_{6} octahedra. The segregation of the SiO_{4} tetrahedra in the layers can be seen in Fig. 3: the SiO_{4} tetrahedra form infinite ribbons $\left[\mathrm{Si}_{4} \mathrm{O}_{8}\right]_{\infty}$ running along the b axis. In these ribbons, one can distinguish the hexagonal rings built up of six tetrahedra, which are characteristic of the β cristobalite. Thus the structure of this phase can be described in terms of [$\left.\mathrm{P}_{4} \mathrm{Si}_{4} \mathrm{O}_{16}\right]_{\infty} \beta$-cristobalite-type layers parallel to (001) connected through octahedral planes $\left[\mathrm{Mo}_{2} \mathrm{O}_{7}\right]_{\infty}$ in which the MoO_{6} octahedra are disconnected from each other. This description shows that the possibility of the existence of different members $\left(\mathrm{P}_{4} \mathrm{Si}_{4+m} \mathrm{O}_{16+2 m}\right)\left(\mathrm{Mo}_{2} \mathrm{O}_{7}\right)$, corresponding to various thicknesses of the β-cristobalite layers, should be considered.

It is also worth noting that there exists in the structure infinite ribbons $\left[\mathrm{P}_{4} \mathrm{Mo}_{2} \mathrm{O}_{15}\right]_{\infty}$ running along b also forming hexagonal rings built up from three MoO_{6} octahedra and three PO_{4} tetrahedra (Fig. 4) so that the structure of this phase can also be de-

Fig. 4. The $\left[\mathrm{Mo}_{2} \mathrm{P}_{4} \mathrm{O}_{15}\right]_{\infty}$ ribbon running along b.
scribed by the assemblage of $\left[\mathrm{Si}_{4} \mathrm{O}_{8}\right]_{\infty}$ ribbons and $\left[\mathrm{P}_{4} \mathrm{Mo}_{2} \mathrm{O}_{15}\right]_{\infty}$ ribbons.

This structure can also be compared to that of the phosphate $\mathrm{NaTiP}_{2} \mathrm{O}_{7}(30)$ which is formed of β-cristobalite layers connected through single slabs of octahedra. Thus from these studies, it appears that the β cristobalite is a rather flexible structure which can adapt octahedra, opening a route to the synthesis of new structural families.

References

1. A. Leclaire, M. M. Borel, A. Grandin, and B. Raveau, J. Solid State Chem. 76, 131 (1988).
2. A. Leclaire, M. M. Borel, A. Grandin, and B. Raveau, Z. Kristallogr. 184, 247 (1988).
3. A. Leclaire, M. M. Borel, A. Grandin, and B. Raveau, J. Solid State Chem. 78, 220 (1989).
4. D. Riou, A. Leclaire, A. Grandin, and B. Raveau, Acta Crystallogr. Sect. C (1989), in press.
5. K. H. Lii and R. C. Haushalter, Acta Crystallogr. Sect. C 43, 2036 (1987).
6. A. Leclaire, M. M. Borel, A. Grandin, and B. Raveau, Eur. J. Solid State Inorg. Chem. 25, 1 (1988).
7. K. H. Lif, R. C. Haushalter, and C. J. O'ConNOR, Ang. Chem. Int. Ed. Engl. 6, 26 (1987).
8. A. Leclaire, J.-C. Monier, and B. Raveau, J. Solid State Chem. 59, 301 (1985).
9. A. Leclaire and B. Raveau, Acta Crystallogr. Sect. C 44, 226 (1988).
10. R. C. Haushalter, J. Chem. Soc. Commun., 1566 (1987).
11. A. Leclaire, J.-C. Monier, and B. Raveau, J. Solid State Chem. 48, 147 (1983).
12. K. H. Lii and R. C. Haushalter, J. Solid State Chem. 69, 320 (1987).
13. J. J. Chen, K. H. Lii, and S. L. Wang, J. Solid State Chem. 76, 204 (1988).
14. A. Leclaire, M. M. Borel, A. Grandin, and B. Raveau, Z. Kristallogr. (1988), in press.
15. K. H. Lii, D. C. Johnstion, D. P. Goshorn, and R. C. Haushalter, J. Solid State Chem. 71, 131 (1987).
16. R. C. Haushalter and F. W. Lai, J. Solid State Chem. 76, 218 (1988).
17. P. Kierkegaard and M. Westerlund, Acta Chem. Scand. 18, 2217 (1964).
18. L. Kh. Minacheva, A. S. Antsyshieina, A. V.

Lavrov, V. G. Sakharova, V. P. Nikolaev, and M. A. Porai-Koshits, Zh. Neorg. Khim. 24, 91 (1979).
19. P. Kierkegaard, Ark. Kemi 19, 1 (1962).
20. P. Kierkegaard, Ark. Kemi 18, 521 (1962).
21. P. Kierkegaard, Ark. Kemi 18, 553 (1962).
22. A. Leclaire, J.-C. Monier, and B. Raveau, Acta Crystallogr. Sect. B 40, 180 (1984).
23. A. Leclaire, M. M. Borel, A. Grandin, and B. Raveau, Mater. Chem. Phys. 12, 537 (1985).
24. A. Leclaire, J.-C. Monier, and B. Raveau, Acta Crystallogr. Sect. C 41, 1719 (1985).
25. A. Leclaire, M. Lamire, and B. Raveau, Acta Crystallogr. Sect. C 44, 1181 (1988).
26. A. Leclaire and B. Raveau, J. Solid State Chem. 71, 283 (1987).
27. S. L. Wang, C. C. Wang, and K. H. Lit, J. Solid State Chem. 74, 409 (1988).
28. T. F. W. Barth, Amer. J. Sci. 23, 350 (1932).
29. M. O'Keeffe and B. G. Hyde, Acta Crystallogr. Sect. B 32, 2923 (1976).
30. A. Leclaire, A. Benmoussa, M. M. Borel, A. Grandin, and B. Raveau, J. Solid State Chem. 77, 299 (1988).

